
N89- 1 5 5 9 0

Graphic Simulation Test Bed for
Robotics Applications

in a Workstation Environment

J. Springfield, A. Mutammara, G. Karsai
G.E. Cook and J. Sztipanovits

Department of Electrical Engineering
Vanderbilt University, Nashville, TN 37235

K. Fernandez, Ph.D.
Automation and Robotics Research,

Marshall Space Flight Center, Huntsville, AL 35812

Abstract -- Graphical simulation is a cost-effective
solution for developing and testing robots and their control
systems. The availability of various high-performance
workstations makes these systems feasible in everyday
practice. Simulation offers preliminary testing of systems
before their actual realizations, and it provides a
framework for developing new control and planning
algorithms. On the other hand, these simulation systems
have to have the capability of incorporating various
knowledge-based system components, e.9. task planners,
representation formalisms, etc. They also should have an
appropriate user interface, which makes possible the
creation and control of simulation models.

ROBOSIM was developed jointly by MSFC and Vanderbilt
University, first in a VAX environment. Recently, the
system has been ported to an HP-9000 workstation equipped
with an SRX graphics accelerator. The user interface of the
system now contains a menu- and icon-based facility, as well
as the original ROBOSIM language. The system is also
coupled to a symbolic computing system based on Common Lisp,
where knowledge-based functionalities are implemented. The
knowledge-based layer uses various representation and
reasoning facilities for programming and testing the control
systems of robots.

3 0 3

Introduction

Robots are becoming increasingly important in every
area of industry. Along with an increase in robot
sophistication and payload capability there is an increase
in the possibility of damage to the robot and to the
workcell, especially during the development of the system
and the algorithms or programs that will drive the robot.
Simulation is even more important for robotic systems
designed to operate in space. These robots, which are
desgned to operate in zero-g, can not be tested in full on
the ground. While robot simulation programs have existed
for a while, the advent of high-speed graphics workstations
allows real-time graphical simulation at a fraction of the
cost as in the past.

ROBOSIM [1,2] was developed jointly between NASA and
Vanderbilt University. ROBOSIM has been running on a DEC
VAX 11/780 with the capability to use terminals with TEK4014
graphics compatibility. Interfaces for Evans & Sutherland
PS~XX, GTI Poly 2000, and Silicon Grahphics IRIS are
supported also.

ROBOSIM operates via an interpreted program that the
user writes. The program consists of commands that create
various solid and planar primitives that can be rotated and
translated by other commands. In this way, the links of the
robot are built up, with the relationships between the links
following the Denavit-Hartenberg convention. ROBOSIM
generates structures describing the physical structure, its
kinematics, and its mass properties: With this information
everything is known except for joint position, velocity, and
torque limits, which are specified in the actual simulation.
Using this information, all aspects of the simulation can be
implemented, while reducing the possibility of data skewing,
as the physical model, the kinematics, and the mass
properties are calculated at the same time from the same
program. All data is provided for collision detection,
graphics display, and dynamics.

This full implementation of ROBOSIM has been ported to
a Hewlett-Packard 350SRx graphics workstation. Several
additional features have been added to exploit the
capabilities of this workstation, such as the 3D graphics
editor.

3 0 4

Graphics Editor

The capabilities of the workstation allow a much
friendlier user-interface. X-Windows and the 3D graphics
library (along with the special-purpose graphics hardware)
provide the basis for a sophisticated means of designing
robots. The editor utilizes menus and a mouse to provide
simple methods to use the system. Also, a "box" of analog
knobs allow the viewpoint to be changed, colors altered, and
various other parameters concerning the graphic display to
be set as desired. Although similar to some CAD systems,
the editor is designed with ROBOSIM in mind.

The editor uses object oriented methods in its
operation. Different types of objects can be created, such
as boxes, cylinders, and custom designed objects. The
reference frames of the links are also defined as objects.
After creation, objects can be rotated, translated, deleted,
and resized. Also, the objects can be attached together.
This attachment is hierarchical in that there is a parent
object and a child object. Any'rotation or translation on a
parent object propogates to any child object and its
children as well. Once objects have been attached then a
resizing operation on either will result in the relationship
between them remaining constant. In this way complex,
custom-designed, yet generic objects can be created. A l l
that is necessary is to specify the dimensions of the
components. This attachment allows more complex objects to
be constructed without losing the ability to operate on the
primitives,

Once the robot link has been built up, the structures
can be saved for later editing. However, this editor will
also generate a ROBOSIM program. The editor goes through
the hierarchy, propogating every operation down. This
yields a primitive object and a set of translations and
rotations. Once this is achieved it is a fairly
straigtforward procedure to automatically generate the
ROBOSIM code. In this way the editor does not need to
concern itself with mass properties or kinematics, as this
is automatically produced by the ROBOSIM object compiler.

Object Compiler

The object compiler takes the output of the graphical
editor and generates all of the data about a link: the
polygonal model, the kinematic model, and the inertial data.
Figure 1 shows a session during the editor in which a link
is built. Figure 2 is a listing of the ROBOSIM code
generated by the editor. And Figure 3 is an outline of the

305

x
a
0
d
(13
k
Q)
>

I

E
d
(13
0 a
0 z

ORIGINAL PAGE IS
OF POOR QUALITY

306

LOOK-FROM X=-150., Y=50., Z=lOO.
LOOK-AT X=O., Y=O., Z=O.
CLEAR
STORE B
F- JOINT-I

TRANSLATE X=O.OOO, Y=O.OOO, Z=-43.333
ADD B
STORE B

CLEAR
R-JOINT-I+1

TRANSLATE X=O.OOO, Y=O.OOO, 2-23.811
ADD B
STORE B

CLEAR
SPHERE R=15.000

TRANSLATE X=O.OOO, Y=O.OOO, Z=10.239
ADD B
STORE B

CLEAR
CYLINDER R=10.000, H=30.000

TRANSLATE x=o.ooo, Y=O.OOO, z=-ia.333
ADD B
STORE B

CLEAR
TRUNCATED-CONE RL=20.000, RU=15.000, H=10.000

TRANSLATE X=O.OOO, Y=O.OOO, Z=-40.000
ADD B
STORE B

CLEAR
LOAD B
STORE-LINK ROBOT.LOC
VIEW
END

Figure 2. ROBOSIM code generated by editor

307

Row

1

2

3

7

11

15

19

20

21

NVEC+ 19

THETA
DZ
DA
ALPHA
JA1 , JA2

I AJNT-I+1 (4x4) I
I AMAT (4x4) I
I NVEC I UNUSED I UNUSED I UNUSED I

Variable Definitions:
= Denavit-Hartenberg parameter
= Denavit-Hartenberg parameter
= Denavit-Hartenberg parameter
= Denavit-Hartenberg parameter
= joint defined flag

JTYPE-I,I+l = joint type - > Revolute,Prismatic,Fixed
AINERT = generalized link inertia
AJNT-I,I+1 = transforms of input and output frames
AMAT _
NVEC -
Xi , Yi , Zi
Di - move or draw vector

link's A-matrix
number of vectors in list
x,y, and z component of vector

-
-
- -
-

Figure 3 . Data Structure of Link

308

data structure generated by ROBOSIM.

S imu 1 at or

The basis of the simulator is a library of C routines.
These routines operate directly on the ROBOSIM structures.
This allows the specifics to be hidden from the user, unless
direct manipulation is required by the simulation. With
these routines, one can implement fast, very specific
simulations that are written in C and linked with the
simulation library. However, one can also implement an
interactive, general-purpose simulation in those cases where
real-time simulation is not required.

These routines allow various robots, environments, and
objects to be loaded separately and combined in any
configuration. They allow commands similar to many robot
programming languages to drive the robots. Collision
detection can be turned on or off, and forces and torques
can be returned to the simulation or used for control of the
robot. Straight-line motion is included as well as a
facility to move along any parametrically defined function.
The joint angles can also be returned to the simulation for
its use.

Although not included at this time, translators for
many robot programming languages will be available in order
to download developed programs directly to the physical
robot.

Knowledge Representation Facilities

It is important to look at the ideas presented above,
along with areas of future expansion, from the point of view
of knowledge representation. Different choices in
representation can result in changes in efficiency,
flexibility, system requirements, and user-friendliness.

The techniques of Knowledge Representation (KR, for
short) have been developed in the framework of Artificial
Intelligence research. For engineering purposes KR
techniques offer enhanced capabilities for modeling, where
in addition to traditional numerical models, various
symbolic models can also be used. The latter might include
various declarative languages which represent technical
concepts and entities [3 1 .

309

This idea is applied in the robot simulation system as
follows. Robot modelling and programming are supported by
various declarative languages, which supply a
knowledge-based description of (1) the robot, (2) its
control system, (3) its environment, and (4) its task to be
performed. Currently, these declarative languages are
realized in a Lisp framework.

The geometric objects in robot modelling together
constitute a graphic model of a robot or objects from its
environment, and they can be used for various other
considerations dependent on the objects, e.9. collision
detection, dynamics, and task planning. For this
application a declarative language has been defined, which
supports the hierarchical representation of geometrical
objects by using object--oriented programming techniques, as
discussed previously.

The computations for the forward and inverse dynamics
can be synthesized from the geometrical and physical model.
This happens as follows: from the declarations describing
the geometry and the physical properties a dataflow graph is
synthesized, which represents the flow of computations
needed to solve the dynamics problem. This graph is
executed on the Multigraph Architecture (M A) [4 , 5] , which
makes possible the integration of symbolic and numeric
computing in such a way, that the structure of a complex
computation is represented in a declarative framework, while
the computational primitives can be represented in terms of
fast and efficient numerical algorithms.

Joint constraints and geometrical properties together
are used for collision detection, where the detection
algorithm also utilizes the representation schemes mentioned
above.

The simulation of a robot system generates numerical
and graphical output: numerical output contains information
about joint angles, forces and torques, etc., while
graphical output provides visual feedback for the designer.
To control a robot which has been modelled using the
facilities described above, one can create robot controller
structures using a similar knowledge representation scheme.
Here, again, a declarative language is used, which lets the
designer describe a control system in terms of signal
processing blocks, which implement various functionalities
of the control system. This declarative language is also
supported by a graphical editing technique, which uses icons
to specify the blocks, and they can be connected to form a
signal processing graph. The resulting declarations are
interpreted to generate the running signal processing system

310

using the Multigraph Architecture.

The tasks to be performed are represented in
declarative terms also. Using hierarchical decomposition,
robot control sequences are represented in symbolic form,
from which a task planner synthesizes the actual sequence of
control actions needed to accomplish a certain goal. The
hierarchical planner generates a chain of objects, which
represent the steps to be performed. Each such step is
linked to a low-level control scheme which implements that
step. Now if the step has successfully been executed (i.e.
the low-level control scheme has not signalled an error) the
execution proceeds, while if there were a problem, the
execution (1) might go along either a new path, or (2) a
completely new sequence is synthesized together with its
low-level control blocks. This dynamic replanning might
influence the computational model of control, dynamically
changing the structure of the control system. One example
might be as follows: if the collision detection scheme
signals an error to the controller system, that event might
initiate the restarting of the task planner to re-generate
or structurally modify the step sequence and/or its
associated controller. This flexible way of representing
tasks, task steps and low-level controllers was made
possible by using the integrated computational model of the
MA.

Conclusions

The need for competent, comprehensive robot simulators
h a s been well established. In order to provide adequate
simulation capability, the system must allow graphical, as
well as dynamic, simulation. The new generation of graphics
workstations provide for extremely fast graphics output,
while freeing the main processor for kinematic and dynamic
calculations. However, mere number crunching is not enough
to create a better simulator. Symbolic planners and other
such AI programs are necessary in order to fully meet the
demanding requirements that are being asked for.

311

References

1. Fernandez, K.R. and Cook, G.E., "Use of Computer
Graphic Simulation Techniques for Robot Control System
Development", IEEE Computer Society, Proc. 18th
Southestern Symposium on System Theory, Knoxville, TN,
April 7-8, 1986, pp.433-441.

2. Fernandez, K.R., "The Use of Computer Graphic Simulation
in the Development of Robotic Systems" , &cc
Astronautica,Vol. 17, No.1, pp.115-122, 1988.

3. Karsai, G., "Declarative Programming Techniques for
Engineering Problems" , Ph. D. Thesis, Vanderbilt
University, August 1988.

4. Sztipanovits, J., "Execution Environment for Intelligent
Real-time Control Systems," Proc. of the NASA/JPL
Symposium on Telerobotics, 24 pqs,, Pasadena, C A I 1987.

5. Biegl, C.A., "Design and Implementation of an Execution
Environment for Knowledge-Based Systems" , Ph. D.
Thesis, Vanderbilt University, December 1988.

312

